Fragility assessment of tunnels in soft soils using artificial neural networks

نویسندگان

چکیده

Recent earthquakes have shown that tunnels are prone to damage, posing a major threat safety and having cascading socioeconomic impacts. Therefore, reliable models needed for the seismic fragility assessment of underground structures quantitative evaluation expected losses. Based on previous researches, this paper presented probabilistic framework based an artificial neural network (ANN), aiming at development curves circular in soft soils. Initially, two-dimensional incremental dynamic analysis nonlinear soil-tunnel system was performed estimate response tunnel under ground shaking. The effects soil-structure-interaction motion characteristics were adequately considered within proposed framework. An ANN employed develop demand model, its results compared with traditional linear regression models. Fragility generated various damage states, accounting associated uncertainties. indicate ANN-based can models, similar capabilities as approaches, lower computational cost is required. be adopted risk typical soils subjected loading, they facilitate decision-making management toward more resilient transport infrastructure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

estimating cumulative infiltration using artificial neural networks in calcareous soils

abstract infiltration process is one of the most important components of the hydrological cycle. on the other hand, the direct measurement of infiltration process is laborious, time consuming and expensive. in this study, the possibility of predicting cumulative infiltration in specific time intervals, using readily available soil data and artificial neural networks (anns) was investigated. for...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Transient Stability Assessment using Artificial Neural Networks

Ab3tractOnline transient stability assessment (TSA) of a power system is not yet feasible due to the intensive computation involved. Artificial neural networks(ANN) have been proposed as one of the approaches to this problem because of its ability to quickly map nonlinear relationships between the input data and the output. In this paper a review of the previously. published papers on TSA using...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Underground Space

سال: 2022

ISSN: ['2096-2754', '2467-9674']

DOI: https://doi.org/10.1016/j.undsp.2021.07.007